Social Media Mining for Pharmacovigilance: challenges and opportunities

Case-control studies from Twitter???

Health Language Processing Lab – Penn IBI Graciela Gonzalez-Hernandez, PhD

email: gragon@pennmedicine.upenn.edu

💟 @gracielagon

Funded by NLM/NIH Grant 5R01LM011176

ASCPT 2018 #Science Session – Orlando, Florida

Social media as an "online health report"?

26% of internet users actively discuss health information. Of that group ...1

- 30% changed behavior as a result
- 42% discussed *current* medical conditions

"Extrapolating" this to Twitter...^{2,3}

- Given 317 million active monthly users (Q3 2015): about 24 million would change their health behavior
- Given 350,000 tweets/minute: about 38,220 tweets / minute about their current medical conditions

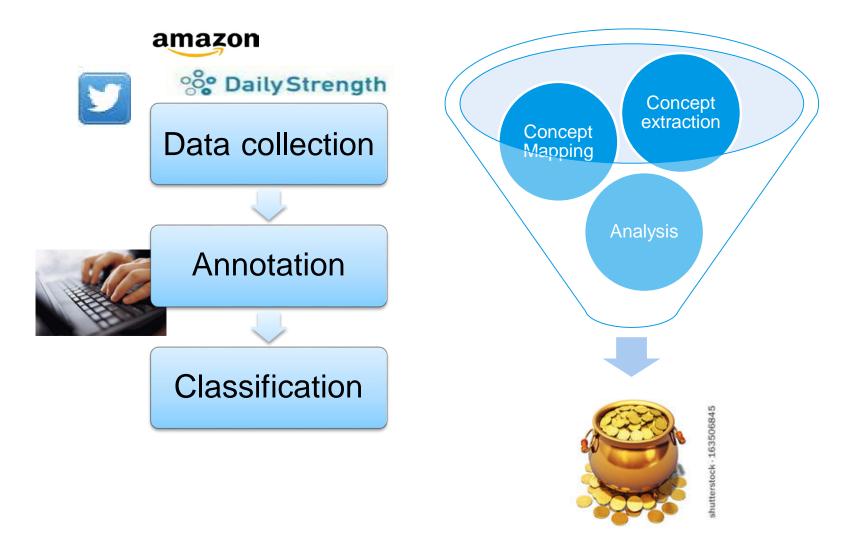
Daily Strength

¹http://www.pewinternet.org/fact-sheets/health-fact-sheet/ ²http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/ ³http://www.internetlive**stats**.com/twitter-**statistics**/

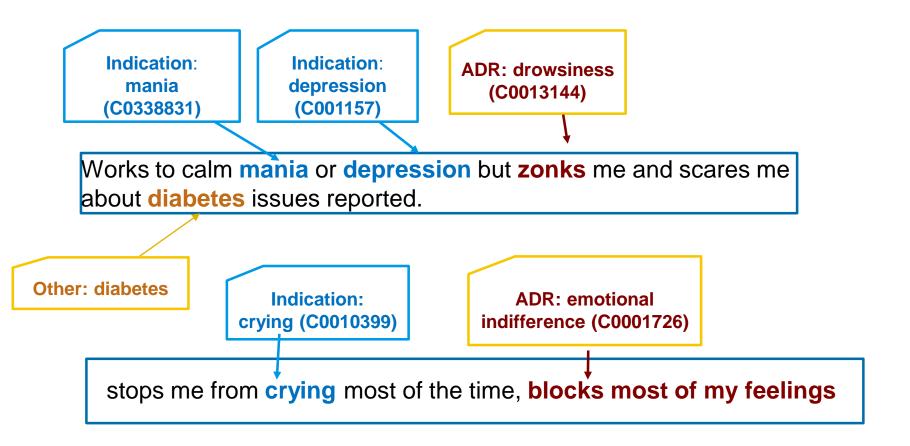
SM data for pharmacovigilance studies

- Patient reporting brings different perspective (34 studies): more detail, info on severity and impact of ADRs in daily life. (PMID 27558545).
- Abundant adverse event reports in SM (29 studies): a higher frequency of adverse events are found in SM, particularly for 'mild' adverse events.
 (PMID 26271492).

Social Media Mining pipeline



Adverse event annotation example



Concept extraction: finding adverse events

- Given a set of postings, need to find a specific concepts automatically
- An algorithm is trained to find (extract) mentions of AEs and other concepts
- Our approach: conditional random fields and deep learning clusters to capture descriptive expressions beyond what lexicon-based approaches could¹

b) I felt awful, it made my <mark>stomach hurt_{ADR}with bad heartburn_{ADR} too, horrid taste in my mouth_{ADR} tho it does tend to clear up the infection_{Indication}.</mark>

1 Nikfarjam et al. Pharmacovigilance from social media.. cluster features. JAMIA. 2015.

6

Unsupervised learned clusters

Cluster	Торіс	Examples of clustered words			
C ₁	Drug	abilify, adderall, ambien, ativan, aspirin, citalopram, effexor,			
		paxil,			
C ₂	Signs/Symptoms	hangover, headache, rash, hive,			
C ₃	Signs/Symptoms	anxiety, depression, disorder, ocd, mania, stabilizer,			
C ₄	Drug dosage	1000mg, 100mg, .10, 10mg, 600mg, 0.25, .05,			
С ₅	Treatment	anti-depressant, antidepressant, drug, med, medication, medicine, treat,			
C ₆	Family member	brother, dad, daughter, father, husband, mom, mother, son, wife,			
C ₇	Date	1992, 2011, 2012, 23rd, 8th, april, aug, august, december,			

Classification task examples

- Adverse event mention classification¹
- Drug abuse classification²
- Medication intake mention classification³
- Pregnancy announcement classification⁴

1 Sarker and Gonzalez. Portable automatic text classification. J Biomed Inform. 2015.

- 2 Sarker et al. Social media mining for toxicovigilance. Drug Saf. 2016.
- 3 Klein et al. Detecting Personal Medication Intake in Twitter. ACL BioNLP Workshop 2017
- 4 Sarker et al Discovering cohorts of pregnant women .. J Med Internet Res. 2018

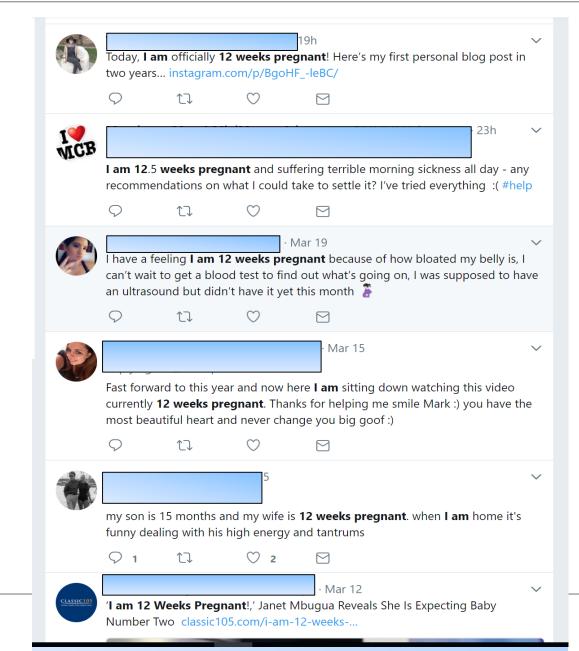
8

Case-control study with SM data?

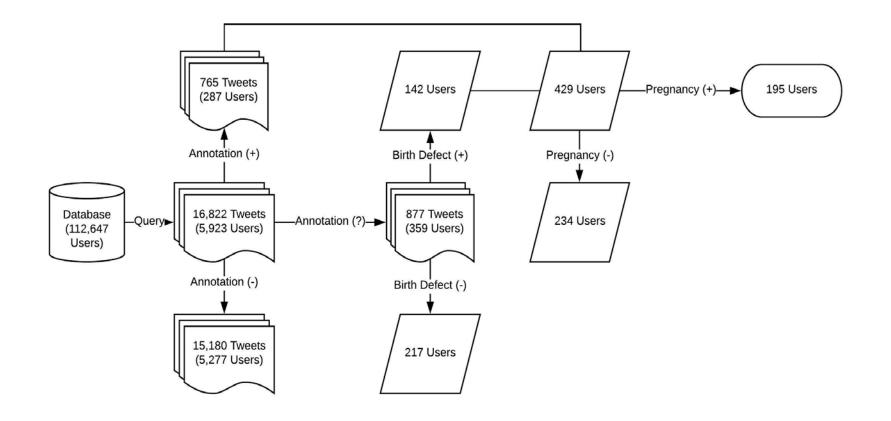
- Select cohort of pregnant women from SM¹
 - About 120 thousand, 700 million tweets
- Within that, find cases of interest
 - "Women who gave birth to a child with a birth defect and whose public tweets include tweets during pregnancy"
- Annotate (100% of the data found)
- Find matching (control) subjects
 - *"Women pregnant around the same time, for whom there is no evidence that their child was born with a birth defect"*

1. Sarker et al Discovering cohorts of pregnant women .. J Med Internet Res. 2018

From Twitter, "I am 12 weeks pregnant"



Finding cases – birth defects cohort



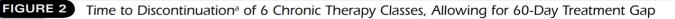
Birth defects data from Social Media

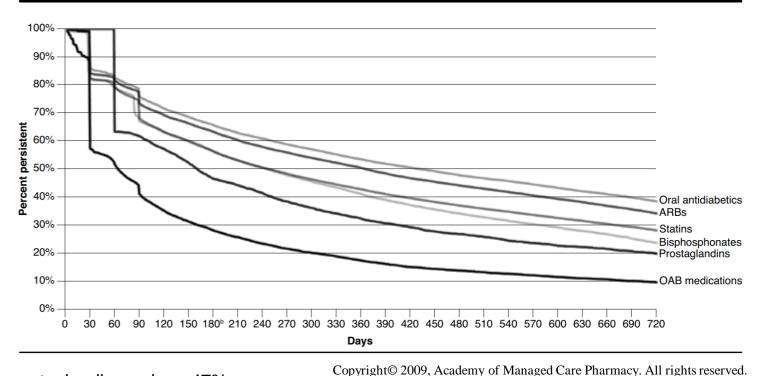
	Cases (n=197)	Controls (n=196)	OR or t-test [95% CI]	P-value	
Age					
Median Age (IQR)	23 (20 to 28)	21 (19 to 23)	2 (1 to 3)	0.0001	
Mean Age (range)	25 (17 to 42)	22 (16 to 37)	2.52 (1.38 to 3.66)	<0.0001	
Women <30 years	80% (134/168)	91% (129/141)	0.37 (0.17 to 0.77)	0.004	
Women <35 years	93% (156/168)	98% (138/141)	0.28 (0.05 to 1.08)	0.04	
Missing data on age	14% (28/196)	28% (55/196)	0.43 (0.25 to 0.73)	0.0008	
Race/Ethnicity					
Caucasian	73% (120/164)	55% (102/184)	2.19 (1.36 to 3.54)	chi ² = 23.69, d.f. = 5 P <	
Black	13% (22/164)	27% (51/184)	0.40 (0.22 to 0.72)	0.001	
Hispanic	9% (14/164)	12% (21/184)	0.72 (0.33 to 1.56)		
Asian	2% (4/164)	3% (5/184)	0.90 (0.17 to 4.24)		
Other (Islander, Native American/Indian, Multiracial/Mixed)	2% (4/164)	2% (5/184)	0.90 (0.17 to 4.24)		
Missing data on race	16% (32/196)	6% (12/196)	0.99 (1.44 to 6.58)		

Adherence/persistence studies from SM

- Social media may be particularly useful for identifying sources of intolerability that lead to non-adherence/non-persistence
- These are often not reported by physicians or patients through standard means because are considered "mild", "not serious" or are unexpected
- Significant problem, given that, on average:
 - 30% of treated patients have a beneficial response
 - 30% do not respond
 - 10% have only side effects
 - 35%-70% are non-adherent / non-persistent, often due to side-effects or perceived/real non-response

6-month persistence rate



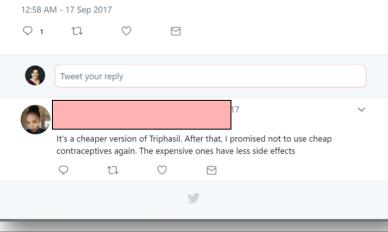


- prostaglandin analogs 47%
- statins 56%
- bisphosphonates 56%
- oral antidiabetics 66%
- angiotensin II receptor blocker 63%
- overactive bladder medications 28%

Comparing Adherence and Persistence Across 6 Chronic Medication Classes Jason Yeaw, J Manag Care Spec Pharm, 2009 Nov;15(9):728-740.

"I stopped taking" & "made me"

I used to be on it. It made me nauseous, gave me headaches, made me bloated & made my period pains worse. I stopped taking it.



Social media data: challenges

Incompleteness:

- Not all health conditions may be revealed
- Complete data about individual cases may be difficult to obtain: taking drug X, but dosage, frequency, length of treatment, may be missing
- Participants from the cohort may dropout at higher rates
- Accessibility:
 - Data from social media is not easily collected: API limitations
 - Not easily processed once collected: challenging to process using automatic methods
 - Data collection methods may have to be changed frequently over time

• Authenticity:

- Bots a large portion of social media is generated by bots, making it harder to mine reliable data
- *Automatic* processing of postings is often misleading: for example postings mentioning a drug might not necessarily mean intake.

